

Optimizing the Operation of Renewable Energy-Driven Reverse Osmosis Desalination

A joint research project Aston University and University of Bahrain

Presented by: Mohamed T. Mito

Supervised by: Dr Philip Davies, Dr Xianghong Ma and Dr Hanan Al-Buflasa

Aston University, UK

Outline

- Introduction
- Research Aims
- Challenges of driving RO desalination by RES
- Research objectives
 - Preliminary Work
 - Further future work

Introduction

UN

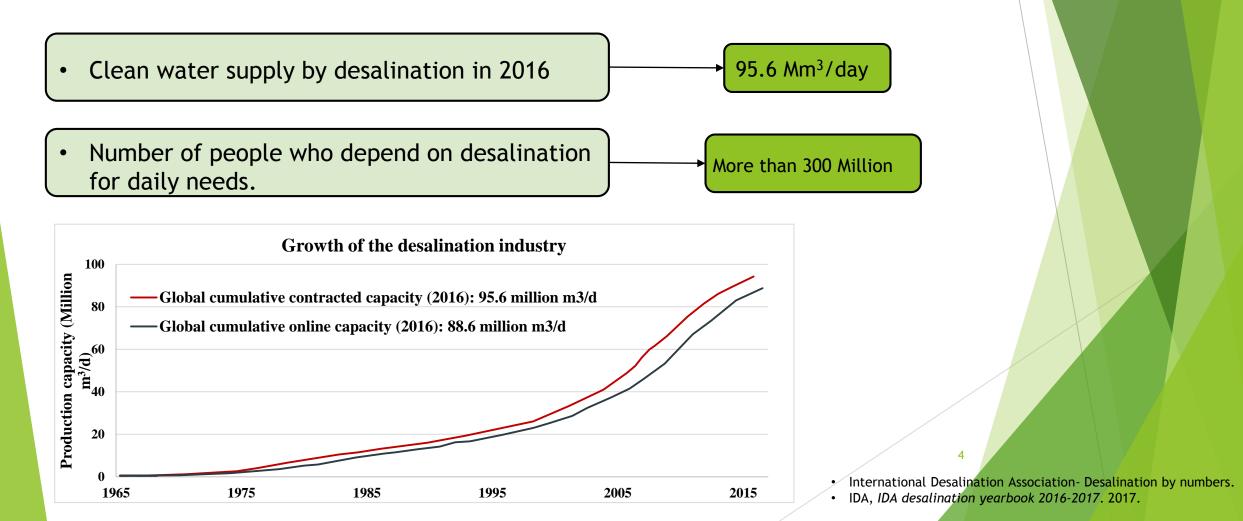
• Water consumption is growing at twice the rate of population growth.

WHO

• By 2025, half of the world's population will live in water stressed areas

IEA

• Water demand will increase in MENA region from 9 billion m³ in 2010 to 13.3 billion m³ in 2030.



- UNWWAP, UN world water development report 2017. Wastewater: The Untapped Resource. 2017: Paris.
- http://www.who.int/mediacentre/factsheets/fs391/en/

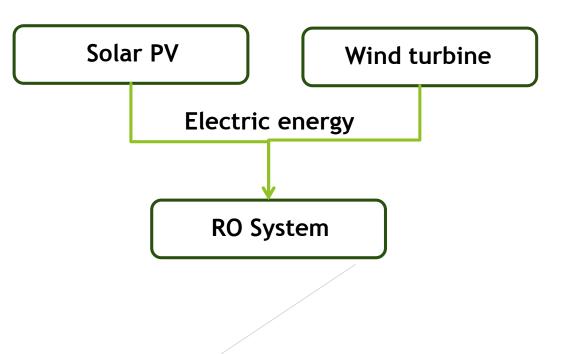
• IRENA and IEA-ETSAP, Water Desalination Using Renewable Energy: Insights for policy makers. 2013.

Desalination

Number of plants operating in June 2015 is 18,426.

Energy consumption of RO plants

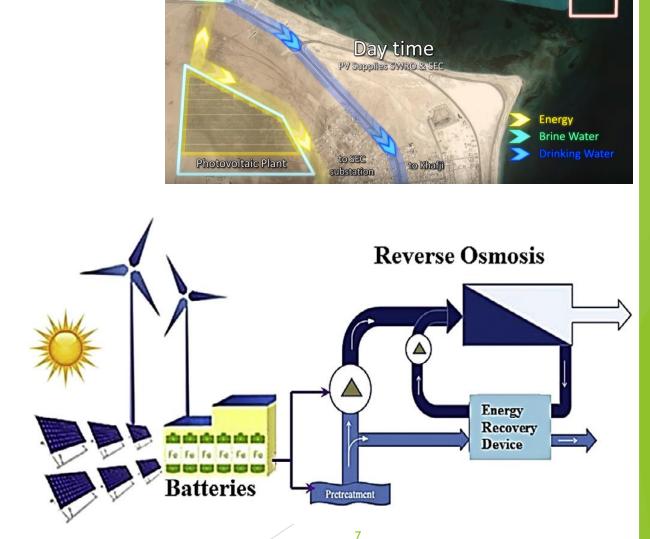
- RO desalination is considered an energy intensive process.
- Energy required for RO desalination 3 4 kWh/m³.
- The daily constant production of 95.6 Mm³/day requires approximately 882 million Ton of fuel is burned per year in 2016.
- In 2017, globally installed desalination plants generated approximately 76 million ton of CO₂ emission.



- Abdelkareem, M.A., et al., *Recent progress in the use of renewable energy sources to power water desalination plants.* Desalination, 2017.
- M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng. Energy-water-environment nexus underpinning future desalination sustainability. Desalination. 413 (2017) 52-64.

Renewable energy-driven desalination

- Deployment price for renewable energy is decreasing.
- Benefits of employing renewable energy in desalination for:
- 1) Countries with high energy availability
- 2) Developing countries
- Suitable renewable energy sources
 - for Reverse Osmosis plants


Current Technologies

1) Grid connected plants

Example: Al Khafji plant in Saudi Arabia

2) Energy storage systems

- Complicate the system
- Increase the capital cost
- Increase water production cost

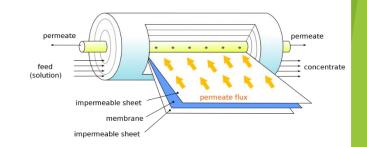
Intake Tower

SWRO Plant

- Advanced water technology. [cited 2017 30 November]; Available from: http://www.awatertech.com/projects.
- V.G. Gude, Energy storage for desalination processes powered by renewable energy and waste heat sources, Applied Energy, 137 (2015) 877-898.

Research Aim

- The aim is to design and optimize a renewable energy-driven RO desalination plant that is directly coupled to the renewable energy source.
- Accommodate the variable and intermittent nature of RESs (that is opposite to the design nature of steady operating RO plant) to allow for large scale implementation.

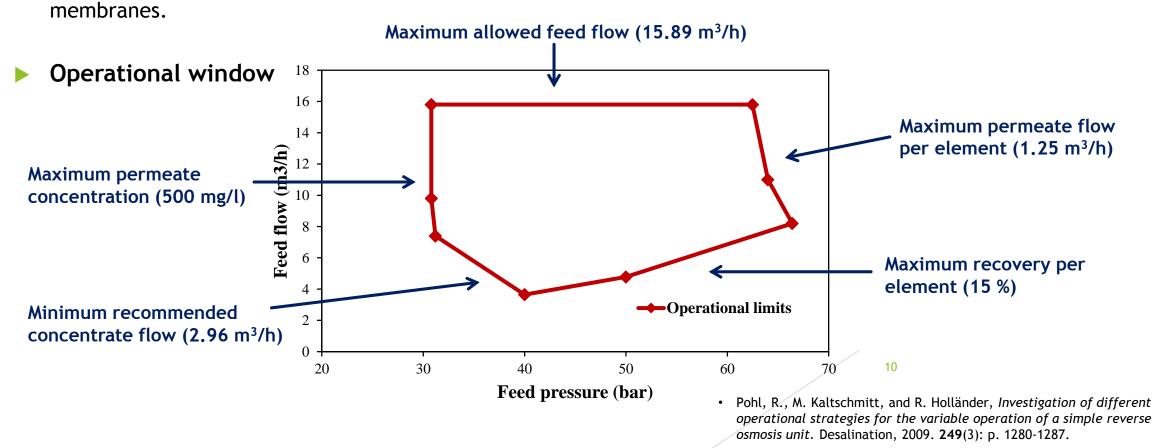


• J.A. Carta, J. González, V. Subiela. Operational analysis of an innovative wind powered reverse osmosis system installed in the Canary Islands. Solar Energy. 75 (2003) 153-68.

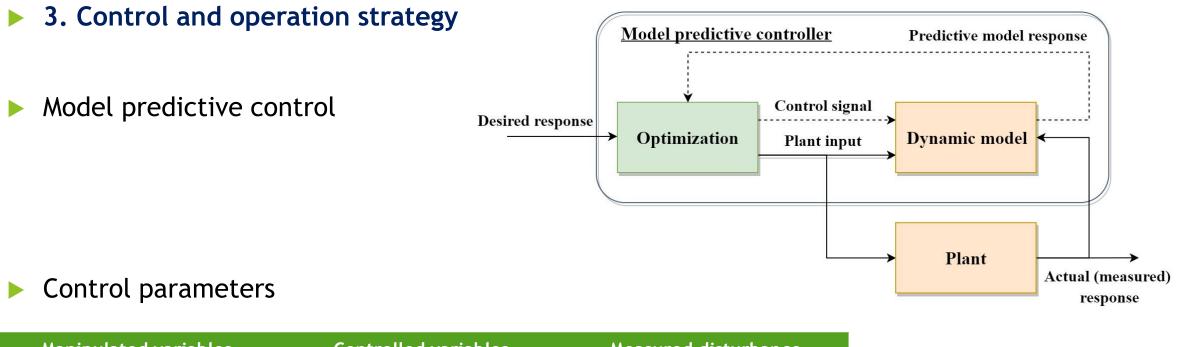
Challenges of driving RO desalination by RES

- 1. Complications of variable operation on RO membranes
- Membrane performance and lifetime

Study	Methodology	Outcome
Carta et al. (2003)	Modules had different number of start-ups and shutdowns.	No membrane
Pestana et al. (2004) Latorre et al. (2015)	Operated the plant for 7000 and 6000 hrs at variable conditions.	deterioration was noted.
Rodger et al. (1992) Winzler et al. (1993) Al-Bastaki and Abbas (1999)	Effect of fluid instabilities and pulsating transmembrane pressure.	Improvement in performance was reported.

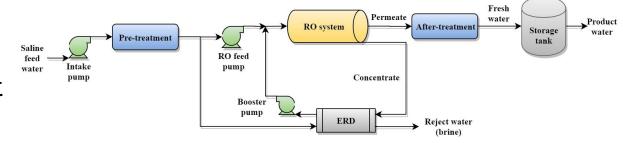


9


Challenges of driving RO desalination by RES

2. Operational window of RO plant

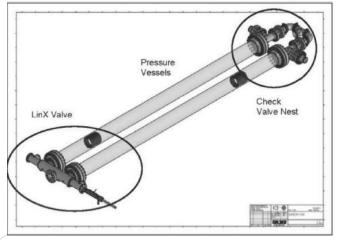
Operational window is dependent on the hydraulic limitations of the RO


Challenges of driving RO desalination by RES

Manipulated variables	Controlled variables	Measured disturbance variables	
Feed pressure	Permeate flow rate	Available power	
Feed flow rate	Permeate concentration	Feed concentration	
Recovery ratio	Specific energy consumption	Feed temperature	

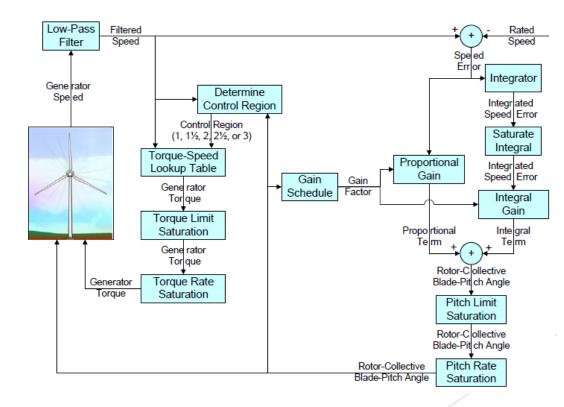
Challenges of driving RO desalination by RES

- 4. Energy recovery device (ERD)
- ERDs can recover the pressure energy that resides in the brine stream.
- ▶ ERDs helped reduce the SEC below 5kWh/m³.


Example of ERDs:

Pelton wheel

Pressure exchanger


DWEER

ERI Energy, pressure exchanger URL:https://www.youtube.com/watch?v=PsgTRFDU_p0

Preliminary work

1. Characterization of the dynamic renewable energy system.

Dynamic modeling of wind turbine

13

 Jonkman, J., S. Butterfield, and a.G.S. W. Musial, Definition of a 5-MW Reference Wind Turbine for Offshore System Development. 2009, National Renewable Energy Laboratory.

Preliminary work

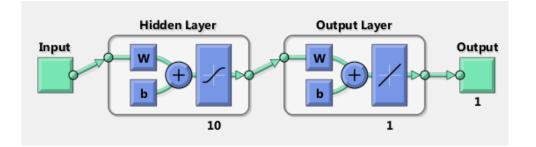
2. Implementing short term prediction for the RE

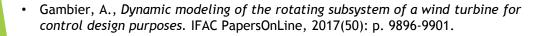
availability, to allow for predictive control approach

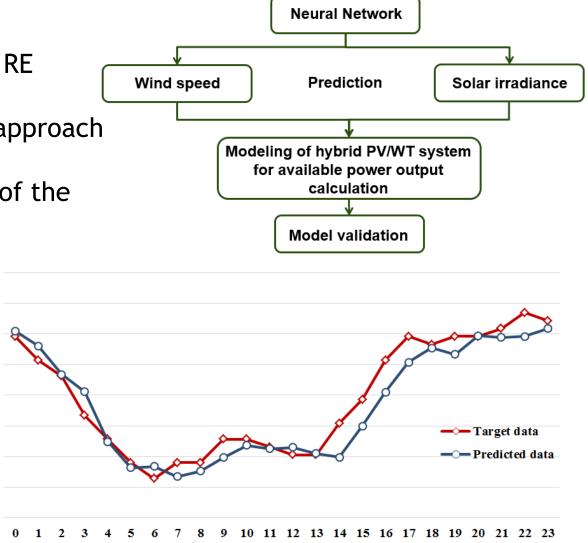
16

14

12

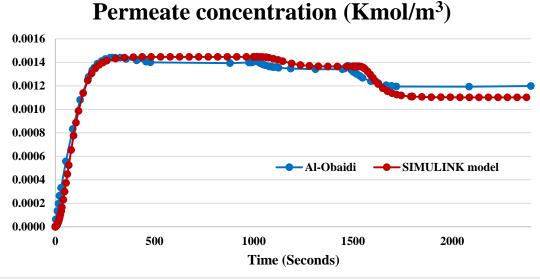

10


8


Wind speed (m/s)

to maximize power capture and scheduling of the

plant operation.



Preliminary work

- Dynamic modeling of RO plant
- The dynamic model presented by Al-Obaidi et al. was adopted.
- The figure present the permeate concentration to a step change in feed flow rate at 1000 S and 1500 S.

Table 1		
Dynamic model of RO modul		0.0016
Water flux (m/s)	$\frac{\mathrm{d}J_w}{\mathrm{d}t} = \left\{ \left(A_w \left(\left(P_b - P_p \right) - RT_b \left(C_w - C_p \right) \right) \right) - J_w \right\} \left(\frac{F_b}{t_f WL} \right) \right\}$	0.0012
Salt molar flux (Kmol/m² S)	$\frac{\mathrm{d}J_s}{\mathrm{d}t} = \left\{ \left(B_s exp\left(\frac{J_w}{K}\right) \left(C_b - C_p \right) \right) - J_s \right\} \left(\frac{F_b}{t_f WL} \right)$	0.0010 0.0008 0.0006
Brine salt concentration (Kmol/m³)	$\frac{\mathrm{d}C_b}{\mathrm{d}t} = -\frac{C_b}{t_f W} \frac{\mathrm{d}F_b}{\mathrm{d}x} - \frac{F_b}{t_f W} \frac{\mathrm{d}C_b}{\mathrm{d}x} + \frac{\mathrm{d}}{\mathrm{d}x} \left[D_b \frac{\mathrm{d}C_b}{\mathrm{d}x} \right] - \frac{J_w C_p}{t_f}$	0.0004 0.0002
Permeate concentration (Kmol/m ³)	$\frac{\mathrm{d}C_p}{\mathrm{d}t} = -\frac{C_p}{t_p W} \frac{\mathrm{d}F_p}{\mathrm{d}x} - \frac{F_p}{t_p W} \frac{\mathrm{d}C_p}{\mathrm{d}x} + \frac{\mathrm{d}}{\mathrm{d}x} \left[D_p \frac{\mathrm{d}C_p}{\mathrm{d}x} \right] + \frac{J_w C_p}{t_f}$	0.0000 - 0

 * M.A. Al-Obaidi, I.M. Mujtaba. Steady state and dynamic modeling of spiral wound wastewater reverse osmosis process. Computers & Chemical Engineering. 90 (2016) 278-99.

Further work

- 1. Defining an operational strategy (power management algorithm) and control system to consider:
 - a) Available energy from RES
 - b) Adequate net driving pressure and feed water flow rate.
 - c) Recovery ratio to avoid concentration polarization and equipment constraints.
 - d) Scheduling of daily water production based on daily prediction of available power.
- 2. Build and validate a model for a large scale desalination plant using classical modeling techniques [Solution-Diffusion model].

Further work

- 3) Build a lab scale prototype with multiple pressure vessel to mimic the modularity of large scale RO plants, with consideration of the ERD.
- 4) Perform a parametric study to investigate the effect of variable operation on:
 - a) Product flow
 - b) Recovery rate
 - c) Conductivity
 - d) Energy consumption
 - e) Performance of energy recovery device
 - Membrane deterioration due to discontinuous operation and different pressure regimes

Thank You

